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ABSTRACT

x

A new efficient algorithm (modified three dimensional spectral
domain solution with “modal spectrum” in propagation direction)

applied to a variety of planar waveguides with periodic stubs is

achieved. In this paper, slow-wave propagation characteristics 01
both symmetrically and unsymmetrically loaded periodic structures
with Iossy dielectric layer such as finline and coplanar waveguide
(CPW) are investigated. Many important features like pass-band

and stop-band related to cut-off and resonant frequencies are

discussed in detail based on numerical computations which are
compared with measured results obtained by transmission line

experimental procedure.

INTRODUCTION

Coplanar waveguide (CPW) and finline M.I. S
(Metal-insulator-Semiconductor) structures are proposed and

analysed by several authors [lm 5] for realizing phase shifters,
delay lines and electronically variable filters.
They allow reducing significantly the component dimensions due tc
the slow-wave propagation. Monolithic technology can be used tc

realize high compact microwave and millimeter wave circuits.

However, the question about an efficient slow-wave mode
excitation will arise wherein.
h is well known that periodically loaded transmission line could
generate the slowing-down of propagation in a certain band.
In addition, the periodic structures have received considerable
attention for their application to wider-bandwith couplers [6] and
high-quality filters, Recently, the network analytical method has
been employed to investigate theoretically the passband qand

shopband properties of periodically loaded striplines and finlines
[7]. Besides, a new efficient hybrid solution to these structures ha:

been reported together with experimental structures. [8,9].

In this paper, a modified three dimensional spectral domain

approach is presented to analyze the characteristics of planar
periodically loaded structure. It should be noted that a new concepl

called “Modal spectrum” with respect to harmonic waves in
propagation direction is introduced in this analysis, which leads to :
considerable alleviation of the analytical formulation and of
numerical computation of eigenproblems.
Slow-wave properties as well as passband and stop-band
dehaviours related to the cut-off and resonant frequencies are

discussed on numerical results, for both symmetrically and
unsymmetrically loaded structures.

THFORFTICAL FORMtJl ATION

In the following, the principle of the modified three dimensional

spectral domain approach will be illustrated for two kinds of Iossy
periodic structures shown in figure 1. The loss consideration of
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Fig.1 :
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Illustration of E–plane circuits
for two kinds of losay periodic
structure

dielectric layer is to some extent because the periodic conductor

strips could be placed on the Iossy semiconductor substrate in the
case of interconnexion with other monolithic chips. Here, it is
assumed that metallizations have vanishing thickness and that the

periodic stubs extend to infinity in the~z directions.
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The electromagnetic field in each homogeneous region is
described by two scalar potentials : @e (LSM) and~n (LSE)

satisfying the Helmholtz equation and the boundary conditions at the

shielding and symmetry walls. We can express the LSE/LSM
potentials in each region by using the Fourier Transform in the x-

direction and the Floquet harmonic representation In the z-

direction : ~n=~o + 2nWp, where ~o is the dominsnt mode
propagation constant and2ntip are higher-order harmonics due tc
periodic stubs, which can readily be considered as “modal

spectrum” in the Fourier sense, i.e. the harmonic wave variation r

guided propagation direction could be regarded as natural Fourier

development in half periodic cell [P/2].
Taking this fact into account, we can derive a set of comprehensive

form as follows : (Sn =2nn#)

*e(j)’ l/f@2’ b~2[sin~x. Cos Enz
- j. sin ccx sin ~nzl @e(i) (y) e-j~oz

(1)

*h(j)=l/#~[COS LXX.COSZJnZ

-j. cos ctx sin ~nzl oh(i) (y) e-j~oz

1 =1,2,3..

This formulation explains a very interesting physical phenomenon
called “higher-order resonant harmonic decoupling” (see fi9ure 2,

which means that even-odd harmonics in z-variation could readil]
be separated regadless of dommant harmonic propagation in periodi(

field representation. This procedure provides us with a powerful
two-dimensional (x-z) Fourier Transform tool. It should be pointec

out that even and odd harmonics correspond to fictlous magnetic am
electric walls respectively. Of course, the dominant harmonic
component ~ o may always occur unless at cut-off frequency.

As previously mentlonned, the two scalar potentials ye(i) and @h(i)

must satisfy the Helmotz equation. So the modal LSM/LSE

inhomogeneous transmission line equation (to y) can be set in the

Fourier domain. All succeeding steps [1 O] appear to be similar to

Itoh’s immitance procedure.

Nevertheless, the field components can be expanded m the concrete

analytical form along our analysis.
We easily obtain a set of algebralc coupled equations by
straightforward way :

Unlike the network analysis method [7] for the investigation of
periodic planar line, the unknown aperture field can efficiently be
divided into two directional field components (x-z) and also, the
field quantities are directly expressed in terms of Fourier series
thus it is more convenient to apply the Galerkin’s procedure In this
method toward an unified efficient algorithm.
Up to this stage, we have to select carefully the basis functions
according to the bidimensional boundary conditions.

According to the field polarization (see figure 1) in the aperture,
the basis functions to be used for the TE mode differ from those fot
the T.M mode. In any case, we can define “guided” basis functions
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electric wall
(odd harmonics)
magnetic wall
(even harmonics)

7?i~.2 : Linear superposition of even and odd
harmonice in eingle periodic cell.

In longitudinal region and “stored” basis functions in transverse

region by taking Z- harmonic coupling into account.
[n thts paper, we set the basis functions in two subregions in terms
of the multiplication of f(x) and g(z) :

NM %

Ex= X Z a’ij f1Xj(X)91XJ (Z)

i j

a“lj f11Xj(X)91tXj (Z)

(3)

b’ij f’zi(x)g’zj (z)

b“ij f“zi(x)g’’zj(z)

where the superscripts 1, II denote the subregion represented in the

aperture, and alj, bij are the unknown coefficients.

Taking the Fourier development and inner products, a non-trivial
solution for the propagation constant can be obtained by setting the
determinant of coefficient matrix equal to zero.

Being ready to apply the Galerkin’s Technique, such basis functions
can be taken as a set of completely orthonormal series. In this

paper, the familiar triangular function form based on Itoh’s
argument (no edge term for g(z)) are used for high speed

computation without spurious solutions. The choice of basis
functions depends notonly onthebounday conditions butalsoonthc

propagation mode behaviour. (The TE mode and/or TEM mode for
single and coupled slots are dominant along these structures. It is
noted that TM mode should occur only in the resonant state). Thi:
consideration can ensure both magnetic walls at z = ~P/2 and S1 c

x z S1 + WI. The fast convergence behaviour can be observed by

using a few basis function number for most of the cases (NX1,2 =

NZ1,2 = 2 for spectral term m = 20%30 and modal spectrum n =

5)
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~UMERICAL RFSUI T~ :

Numerical results given in the following are obtained for dl =8

mm, d2 = 0,66 mm, d3 = 14,2 mm in WR-90 waveguide.

A main principle for obtaining a slowwave is to store the electric

and magnetic energy separately in space. Thereby the M.I.S
(transverse space operation) structures and periodic structures
(longitudinal space operation) are employed to generate the
slowing-down of propagation in a certain frequency range.
In this paper, the slowwave phenomenon observed in the pass band
by both experimental and theoretical analysis could be explained as

the coupling of ~ higher order mode in each periodic cell (electric
and magnetic energy to be concentrated respectively in smaller ado

(W1 ) and larger slot (W2)).

At and beyond resonant frequency point, all periodic cells can

effectively be regarded as cascade coupled cavities where the stuk

plays a significant role.

Figure 3 illustrates dispersion characteristics of periodic finline
with arbitrary located stubs. The comparison between measured

and calculated results shows a very good agreement over the
passband range, which valids this method. It can be seen that the
passband is limited by two points : cut-off and resonant frequencies:
due tho shielded waveguide and periodic stubs. The former seemstc

be constant (approximatively equal to that of corresponding uniforn
structure). Indeed the influence of periodic stubs becomes negligible

near the cut-off point.

(resonant frequencies)
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Fi.g.3 : Dispersion characteristics of periodic
finline with arbitrary located stubs.
Ml = 0.5,” W2 = 4.5, S1 = 4.83 (mm)
pxd = 3x1 (mm), Er = 2.22

On the other hand, by moving the stubs form S2 = 2,83 mm

(symmetric case) to S2 = 4,83 mm (offset case) the resonant

frequency goes down considerably.
Another interesting phenomenon is that the resonant frequency can

effectively be changed by adjusting the period length without

varying the dispersion characteristics over the passband range
unless the’ frequency is in the shadow of resonance. The resonance
phenomenon arises in two cases :

(1) s, -s*
and/or = C (2k-1)/4.~

(2)

W2-W1-S1

p=n Ag/2 (k, n=l,2,3 ......)

(4)

The coefficient C is determined by geometric conditions. It can

easily be seen that passbands and stopbands will occur periodically

with the frequency.

From results plotted on figure 4 several applications can be
considered. For example, using long stubs (w2/wit), very narrclw

selective filters can be obtained because the resonant frequency

closes the cutoff frequency.

Another possibility : for small values of w2/wl (and small S1)

dispersion of odd mode tends to that of even mode all over the
passband, so, broad bandwidth directional couplers become
realizable.

Figure 5 shows the substrate losses as a function of frequency. h
general losses are always in accordance with the propagation

constant (increasing with frequency). However, for odd modes, a
minimum can be observed near cut-off frequency. It is remarked

w2/wl :

5.0 If’ I
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Fig.4 : Mode behaviors of the CPW structure
as a function of frequency
wl=o,5 mm, SI = 4.08 mm, ceff = 2.22
pxd=3.0x 1.0 (mm)

that optimal propagation (minimal losses) approaches ‘eff = 1.

CONCLUSION:

A new concept called “modal spectrum” in propagation direction ha:
been introduced and successfully applied in the theoretical analysis.
It makes possible to use directly the three dimensional spectral
domain approach in both symmetrically and unsymmetrically loaded

periodic structures. Several examples based on this unified
algorithm show the slow-wave phenomenon as well as passband ;and
stopband behaviour related to the cut-off and resonant frequencies.

The dielectric Iosses can be involded.
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Propagation loss of the CPW structure
as a function of frequency for diffe-
rent ratio w2/wl, (U = 0.001 Ijfhn)
(the same conditions as Fig.4)
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