

TOWARDS AN UNIFIED EFFICIENT ALGORITHM FOR CHARACTERIZING THE PLANAR PERIODIC WAVEGUIDES

Ke WU Pierre SAGUET

LEMO - E.N.S.E.R.G.
23, Avenue des Martyrs 38031 GRENOBLE CEDEX FRANCE

ABSTRACT

A new efficient algorithm (modified three dimensional spectral domain solution with "modal spectrum" in propagation direction) applied to a variety of planar waveguides with periodic stubs is achieved. In this paper, slow-wave propagation characteristics of both symmetrically and unsymmetrically loaded periodic structures with lossy dielectric layer such as finline and coplanar waveguide (CPW) are investigated. Many important features like pass-band and stop-band related to cut-off and resonant frequencies are discussed in detail based on numerical computations which are compared with measured results obtained by transmission line experimental procedure.

INTRODUCTION

Coplanar waveguide (CPW) and finline M.I.S (Metal-Insulator-Semiconductor) structures are proposed and analysed by several authors [1~5] for realizing phase shifters, delay lines and electronically variable filters.

They allow reducing significantly the component dimensions due to the slow-wave propagation. Monolithic technology can be used to realize high compact microwave and millimeter wave circuits. However, the question about an efficient slow-wave mode excitation will arise wherein.

It is well known that periodically loaded transmission line could generate the slowing-down of propagation in a certain band.

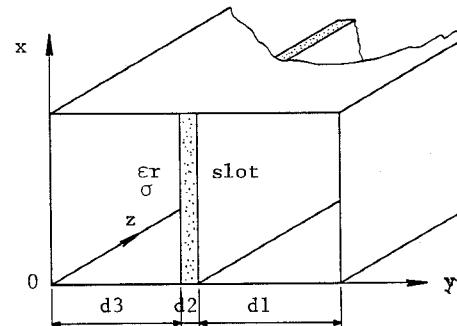
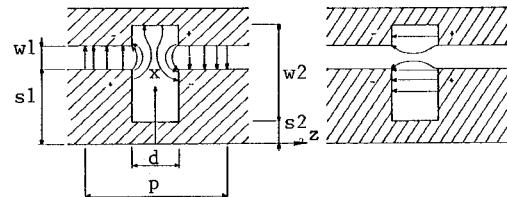
In addition, the periodic structures have received considerable attention for their application to wider-bandwidth couplers [6] and high-quality filters. Recently, the network analytical method has been employed to investigate theoretically the passband and stopband properties of periodically loaded striplines and finlines [7]. Besides, a new efficient hybrid solution to these structures has been reported together with experimental structures. [8,9].

In this paper, a modified three dimensional spectral domain approach is presented to analyze the characteristics of planar periodically loaded structure. It should be noted that a new concept called "Modal spectrum" with respect to harmonic waves in propagation direction is introduced in this analysis, which leads to a considerable alleviation of the analytical formulation and of numerical computation of eigenproblems.

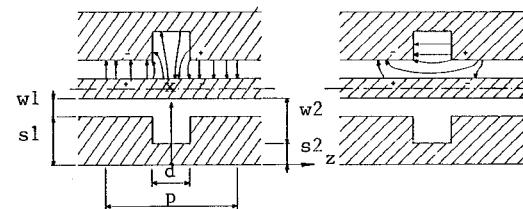
Slow-wave properties as well as passband and stop-band behaviours related to the cut-off and resonant frequencies are discussed on numerical results, for both symmetrically and unsymmetrically loaded structures.

THEORETICAL FORMULATION

In the following, the principle of the modified three dimensional spectral domain approach will be illustrated for two kinds of lossy periodic structures shown in figure 1. The loss consideration of



(a) : Periodic finline with arbitrary located stubs



(b) : Periodic CPW line with symmetric loaded stubs

Fig.1 : Illustration of E-plane circuits for two kinds of lossy periodic structures

dielectric layer is to some extent because the periodic conductor strips could be placed on the lossy semiconductor substrate in the case of interconnection with other monolithic chips. Here, it is assumed that metallizations have vanishing thickness and that the periodic stubs extend to infinity in the $\pm z$ directions.

The electromagnetic field in each homogeneous region is described by two scalar potentials : ψ_e (LSM) and ψ_n (LSE) satisfying the Helmholtz equation and the boundary conditions at the shielding and symmetry walls. We can express the LSE/LSM potentials in each region by using the Fourier Transform in the x-direction and the Floquet harmonic representation in the z-direction : $\beta_n = \beta_0 + 2n\pi/p$, where β_0 is the dominant mode propagation constant and $2n\pi/p$ are higher-order harmonics due to periodic stubs, which can readily be considered as "modal spectrum" in the Fourier sense, i.e. the harmonic wave variation in guided propagation direction could be regarded as natural Fourier development in half periodic cell [P/2].

Taking this fact into account, we can derive a set of comprehensive form as follows : ($\xi_n = 2n\pi/p$)

$$\begin{aligned} \psi_{(i)}^e &= 1/\sqrt{\alpha^2 + \beta_n^2} [\sin \alpha x \cos \xi_n z \\ &\quad - j \sin \alpha x \sin \xi_n z] \phi_{(i)}^e(y) e^{-j\beta_0 z} \end{aligned} \quad (1)$$

$$\begin{aligned} \psi_{(i)}^h &= 1/\sqrt{\alpha^2 + \beta_n^2} [\cos \alpha x \cos \xi_n z \\ &\quad - j \cos \alpha x \sin \xi_n z] \phi_{(i)}^h(y) e^{-j\beta_0 z} \end{aligned}$$

$i = 1, 2, 3...$

This formulation explains a very interesting physical phenomenon called "higher-order resonant harmonic decoupling" (see figure 2, which means that even-odd harmonics in z-variation could readily be separated regardless of dominant harmonic propagation in periodic field representation. This procedure provides us with a powerful two-dimensional (x-z) Fourier Transform tool. It should be pointed out that even and odd harmonics correspond to fictitious magnetic and electric walls respectively. Of course, the dominant harmonic component β_0 may always occur unless at cut-off frequency.

As previously mentionned, the two scalar potentials $\psi_{(i)}^e$ and $\psi_{(i)}^h$ must satisfy the Helmholtz equation. So the modal LSM/LSE inhomogeneous transmission line equation (to y) can be set in the Fourier domain. All succeeding steps [10] appear to be similar to Itoh's imittance procedure.

Nevertheless, the field components can be expanded in the concrete analytical form along our analysis.

We easily obtain a set of algebraic coupled equations by straightforward way :

$$\begin{vmatrix} \tilde{Y}_{xx}(\alpha, \xi_n, \beta_0) & \tilde{Y}_{xz}(\alpha, \xi_n, \beta_0) \\ \tilde{Y}_{zx}(\alpha, \xi_n, \beta_0) & \tilde{Y}_{zz}(\alpha, \xi_n, \beta_0) \end{vmatrix} \begin{vmatrix} \tilde{E}_x \\ \tilde{J}_x \end{vmatrix} = \begin{vmatrix} \tilde{E}_z \\ \tilde{J}_z \end{vmatrix} \quad (2)$$

Unlike the network analysis method [7] for the investigation of periodic planar line, the unknown aperture field can efficiently be divided into two directional field components (x-z) and also, the field quantities are directly expressed in terms of Fourier series, thus it is more convenient to apply the Galerkin's procedure in this method toward an unified efficient algorithm.

Up to this stage, we have to select carefully the basis functions according to the bidimensional boundary conditions.

According to the field polarization (see figure 1) in the aperture, the basis functions to be used for the TE mode differ from those for the TM mode. In any case, we can define "guided" basis functions

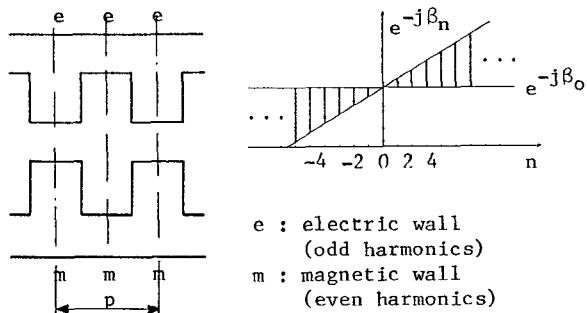


Fig.2 : Linear superposition of even and odd harmonics in single periodic cell.

in longitudinal region and "stored" basis functions in transverse region by taking Z- harmonic coupling into account.

In this paper, we set the basis functions in two subregions in terms of the multiplication of $f(x)$ and $g(z)$:

$$\begin{aligned} E_x &= \sum_{i=1}^{N_{x1}} \sum_{j=1}^{N_{z1}} a_{ij}^I f_{xi}^I(x) g_{xj}^I(z) \\ &\quad + \sum_{i=1}^{N_{x2}} \sum_{j=1}^{N_{z2}} a_{ij}^{II} f_{xi}^{II}(x) g_{xj}^{II}(z) \\ E_z &= \sum_{i=1}^{N_{x1}} \sum_{j=1}^{N_{z1}} b_{ij}^I f_{zi}^I(z) g_{zj}^I(z) \\ &\quad + \sum_{i=1}^{N_{x2}} \sum_{j=1}^{N_{z2}} b_{ij}^{II} f_{zi}^{II}(z) g_{zj}^{II}(z) \end{aligned} \quad (3)$$

where the superscripts I, II denote the subregion represented in the aperture, and a_{ij} , b_{ij} are the unknown coefficients.

Taking the Fourier development and inner products, a non-trivial solution for the propagation constant can be obtained by setting the determinant of coefficient matrix equal to zero.

Being ready to apply the Galerkin's Technique, such basis functions can be taken as a set of completely orthonormal series. In this paper, the familiar triangular function form based on Itoh's argument (no edge term for $g(z)$) are used for high speed computation without spurious solutions. The choice of basis functions depends not only on the boundary conditions but also on the propagation mode behaviour. (The TE mode and/or TEM mode for single and coupled slots are dominant along these structures. It is noted that TM mode should occur only in the resonant state). This consideration can ensure both magnetic walls at $z = \pm P/2$ and $S_1 < x < S_1 + W_1$. The fast convergence behaviour can be observed by using a few basis function number for most of the cases ($N_{x1,2} = N_{z1,2} = 2$ for spectral term $m = 20 \sim 30$ and modal spectrum $n = 5$)

NUMERICAL RESULTS :

Numerical results given in the following are obtained for $d_1 = 8$ mm, $d_2 = 0.66$ mm, $d_3 = 14.2$ mm in WR-90 waveguide.

A main principle for obtaining a slowwave is to store the electric and magnetic energy separately in space. Thereby the M.I.S (transverse space operation) structures and periodic structures (longitudinal space operation) are employed to generate the slowing-down of propagation in a certain frequency range.

In this paper, the slowwave phenomenon observed in the pass band by both experimental and theoretical analysis could be explained as the coupling of \pm higher order mode in each periodic cell (electric and magnetic energy to be concentrated respectively in smaller slot (w_1) and larger slot (W_2)).

At and beyond resonant frequency point, all periodic cells can effectively be regarded as cascade coupled cavities where the slot plays a significant role.

Figure 3 illustrates dispersion characteristics of periodic finline with arbitrary located stubs. The comparison between measured and calculated results shows a very good agreement over the passband range, which validates this method. It can be seen that the passband is limited by two points : cut-off and resonant frequencies due to the shielded waveguide and periodic stubs. The former seems to be constant (approximatively equal to that of corresponding uniform structure). Indeed the influence of periodic stubs becomes negligible near the cut-off point.

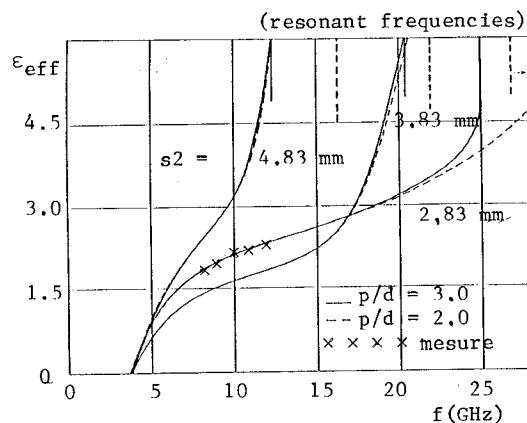


Fig.3 : Dispersion characteristics of periodic finline with arbitrary located stubs.
 $w_1 = 0.5$, $w_2 = 4.5$, $s_1 = 4.83$ (mm)
 $p \times d = 3 \times 1$ (mm), $\epsilon_r = 2.22$

On the other hand, by moving the stubs from $s_2 = 2.83$ mm (symmetric case) to $s_2 = 4.83$ mm (offset case) the resonant frequency goes down considerably.

Another interesting phenomenon is that the resonant frequency can effectively be changed by adjusting the period length without varying the dispersion characteristics over the passband range unless the frequency is in the shadow of resonance. The resonance phenomenon arises in two cases :

$$(1) \quad S_1 - S_2 \\ \text{and/or} \quad = C(2k-1)/4\lambda \\ w_2 - w_1 - s_1 \quad (4)$$

$$(2) \quad p = n\lambda g/2 \quad (k, n = 1, 2, 3, \dots)$$

The coefficient C is determined by geometric conditions. It can easily be seen that passbands and stopbands will occur periodically with the frequency.

From results plotted on figure 4 several applications can be considered. For example, using long stubs ($w_2/w_1 \uparrow$), very narrow selective filters can be obtained because the resonant frequency closes the cutoff frequency.

Another possibility : for small values of w_2/w_1 (and small S_1) dispersion of odd mode tends to that of even mode all over the passband, so, broad bandwidth directional couplers become realizable.

Figure 5 shows the substrate losses as a function of frequency. In general losses are always in accordance with the propagation constant (increasing with frequency). However, for odd modes, a minimum can be observed near cut-off frequency. It is remarked

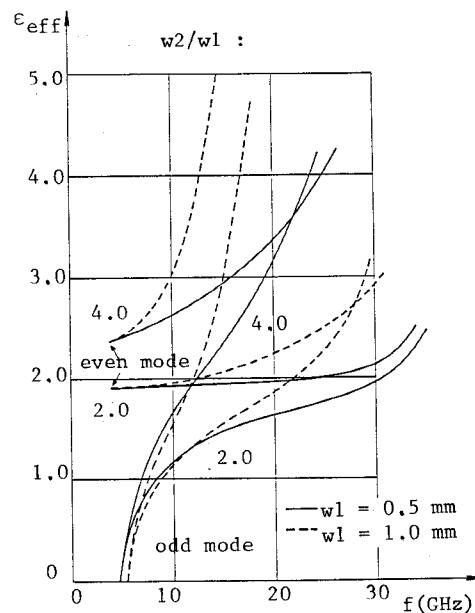


Fig.4 : Mode behaviours of the CPW structure as a function of frequency
 $w_1 = 0.5$ mm, $s_1 = 4.08$ mm, $\epsilon_{eff} = 2.22$
 $p \times d = 3.0 \times 1.0$ (mm)

that optimal propagation (minimal losses) approaches $\epsilon_{eff} = 1$.

CONCLUSION :

A new concept called "modal spectrum" in propagation direction has been introduced and successfully applied in the theoretical analysis. It makes possible to use directly the three dimensional spectral domain approach in both symmetrically and unsymmetrically loaded periodic structures. Several examples based on this unified algorithm show the slow-wave phenomenon as well as passband and stopband behaviour related to the cut-off and resonant frequencies. The dielectric losses can be involded.

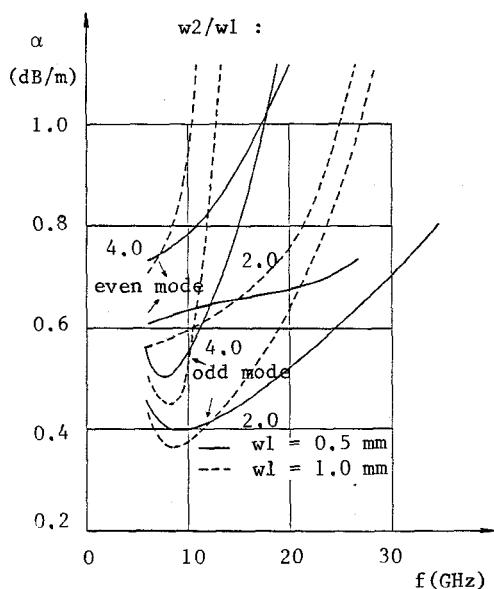


Fig.5 : Propagation loss of the CPW structure as a function of frequency for different ratio w_2/w_1 . ($\sigma = 0.001 \text{ 1/}\Omega\text{m}$)
(the same conditions as Fig.4)

References :

- [1] H. Hasegawa, H. Okizaki,
"MIS and Schottky slow-wave coplanar striplines on GaAs substrates"
Electron. Lett., 1977, 13, pp. 663-664
- [2] S. Seki, H. Hasegawa,
"Cross-tie slow-wave coplanar wave-guide on semi-insulating GaAs substrates"
ibid., 1981, 17, pp. 940-941
- [3] Y. Fukuoda, Y. Shih, T. Itoh,
"Analysis of slow-wave coplanar waveguide for monolithic integrated circuits"
IEEE Trans., 1983, MTT-31, pp. 567-573
- [4] R. Sorrentino, G. Leuzzi, A. Silbermann,
"Characteristics of metal-insulator-semiconductor coplanar waveguides for monolithic microwave circuits"
ibid., 1984, MTT-32, pp. 410-415
- [5] A. Abdel Azeim, H. El Hennawy, S. Mahrous,
"Analysis of fin-lines on semiconductor substrate 14th EMC, LIEGE, BELGIUM, 10th-13th, pp. 346-351, sept. 1984.
- [6] F. J. Glandorf and Ingo Wolff,
"A spectral domain hybrid field analysis of periodically inhomogeneous microstrips lines"
1984, IEEE MTT-S, Digest, PP. 466Y468
- [7] T. Kitazawa, R. Mittra,
"An investigation of strip lines and finlines with periodic stubs"
IEEE Trans., 1984, MTT-32, pp. 686-688
- [8] K. Wu, V. Dzougalev, P. Saguet,
"A complete theoretical and experimental analysis on properties of periodic planar structure"
unpublished
- [9] V. Dzougalev, K. Wu, P. Saguet,
"Experimental and theoretical investigation of characteristics of periodic-loaded finlines"
Electron. Lett., 1986, 22, pp. 984-985
- [10] K. Wu, A. Coumes, P. Saguet,
"New generalized computations of quasi-planar waveguides characteristics",
to be published in Inter. J. of infrared and millimeter wave, vol. 8, No. 3, 1987