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ABSTRACT

A new efficient algorithm (modified three dimensional spectral
domain solution with "modal spectrum” in propagation direction)
applied to a variety of planar waveguides with periodic stubs is
achieved. In this paper, slow-wave propagation characteristics of
both symmetrically and unsymmetrically loaded periodic structures
with lossy dielectric layer such as finline and coplanar waveguide
(CPW) are investigated. Many important features like pass-band
and stop-band related to cut-off and resonant frequencies are
discussed in detail based on numerical computations which are
compared with measured results obtained by transmission line
experimental procedure.

INTRODUCTION

Coplanar waveguide (CPW) and finline M.I.S
(Metal-Insulator-Semiconductor) structures are proposed and
analysed by several authors [1V5] for realizing phase shifters,
delay lines and electronically variable filters.

They allow reducing significantly the component dimensions due tc
the sliow-wave propagation. Monolithic technology can be used tc
realize high compact microwave and millimeter wave circuits.
However, the question about an efficient slow-wave mode
excitation will arise wherein.

it is well known that periodically loaded transmission line could
generate the slowing-down of propagation in a certain band.

In addition, the periodic structures have received considerable
attention for their application to wider-bandwith couplers [6] and
high-quality filters. Recently, the network analytical method has
been employed to investigate theoretically the passband gand
shopband properties of periodically loaded striplines and finlines
[7]. Besides, a new efficient hybrid solution to these structures has
been reported together with experimental structures. [8,9].

In this paper, a modified three dimensional spectral domain
approach is presented to analyze the characteristics of planar
periodically loaded structure. It should be noted that a new concept
called "Modal spectrum" with respect to harmonic waves in
propagation direction is introduced in this analysis, which leads to ¢
considerable alleviation of the analytical formulation and of
numerical computation of eigenproblems.

Slow-wave properties as well as passband and stop-band
dehaviours related to the cut-off and resonant frequencies are
discussed on numerical results, for both symmetrically and
unsymmetrically loaded structures.

THEORETICAL FORMULATION

in the following, the principle of the modified three dimensional
spectral domain approach will be illustrated for two kinds of lossy
periodic structures shown in figure 1. The loss consideration of
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(a) : Periodic finline with arbitrary
located stubs
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(b) : Periodic CPW line with symmetric
loaded stubs

Fig.l : Illustration of E-plane circuits
for two kinds of lossy periodic
structures

dielectric layer is to some extent because the periodic conductor
strips could be placed on the lossy semiconductor substrate in the
case of interconnexion with other monolithic chips. Here, it is
assumed that metallizations have vanishing thickness and that the
periodic stubs extend to infinity in thet z directions.

1987 IEEE MTT-S Digest



The electromagnetic field in each homogeneous region is
described by two scalar petentials : ¢, (LSM) and ¢, (LSE)

satisfying the Helmholtz equation and the boundary conditions at the
shielding and symmetry walls. We can express the LSE/LSM
potentials in each region by using the Fourier Transform in the x-
direction and the Floquet harmonic representation in the z-
direction : Bn=Bo + 2nT/p, where Bo is the dominant mode
propagation constant and 2nwp are higher-order harmonics due tc
periodic stubs, which can readily be considered as "modal
spectrum” in the Fourier sense, i.e. the harmonic wave variation Ir
guided propagation direction could be regarded as natural Fourier
development in half pericdic cell [P/2].

Taking this fact into account, we can derive a set of comprehensive
form as follows : (§, = 2n )
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This formulation explains a very interesting physical phenomenon
called "higher-order resonant harmonic decoupling” (see figure 2
which means that even-odd harmonics in z-variation could readily
be separated regadless of dominant harmonic propagation in periodic
field representation. This procedure provides us with a powerful
two-dimensional (x-z) Fourier Transform tool. It should be pointec
out that even and odd harmonics correspond to fictious magnetic ant
slectric walls respectively. Of course, the dominant harmonic
component g , may always occur unless at cut-off frequency.

As previously mentionned, the two scalar potentials ,pe(i) and ‘l’h(i)

must satisfy the Helmotz equation. So the modal LSM/LSE
inhomogeneous transmission line equation (to y) can be set in the
Fourier domain. All succeeding steps [10] appear to be similar to
Itoh's immitance procedure.

Nevertheless, the field components can be expanded In the concrete
analytical form along our analysis.

We easily obtain a set of algebraic coupled equations by
straightfoward way :
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Unlike the network analysis method [7] for the investigation of
periodic planar line, the unknown aperture field can efficiently be
divided into two directional field components (x-z) and also, the
field quantities are directly expressed in terms of Fourier series.
thus it is more convenient to apply the Galerkin's procedure In this
method toward an unified efficient algorithm.

Up to this stage, we have to select carefully the basis functions
according to the bidimensional boundary conditions.

According to the field polarization (see figure 1) in the aperture,
the basis functions to be used for the TE mode differ from those for
the T.M mode. In any case, we can define "guided" basis functions
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¥ig.2 : Linear superposition of even and odd
harmonics in single periodic cell,

In longitudinal region and "stored” basis functions in transverse
region by taking Z- harmonic coupling into account.

In this paper, we set the basis functions in two subregions in terms
of the multiplication of f(x) and g(z) :
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where the superscripts |, Il denote the subregion represented in the

aperture, and a bij are the unknown coefficients.

Taking the Fourier development and inner products, a non-trivial
solution for the propagation constant can be obtained by setting the
determinant of coefficient matrix equal to zero.

Being ready to apply the Galerkin's Technique, such basis functions
can be taken as a set of completely orthonormal series. In this
paper, the familiar triangular function form based on ltoh's
argument (no edge term for g(z)) are used for high speed
computation without spurious solutions. The choice of basis
functions depends not only on the bounday conditions but also on the
propagation mode behaviour. (The TE mode and/or TEM mode for
single and coupled slots are dominant along these structures. It is
noted that TM mode should occur only in the resonant state). Thie
consideration can ensure both magnetic walls at z = * P/2 and Sy <

X <8¢ + Wq. The fast convergence behaviour can be observed by
using a few basis function number for most of the cases (Nyq 2 =
N4 ,2 = 2 for spectral term m = 20 ~, 30 and modal spectrum n =
5)



NUMERICAL RESULTS :

Numerical results given in the following are obtained for dy =8
mm, dy = 0,66 mm, d3 = 14,2 mm in WR-90 waveguide.

A main principle for obtaining a slowwave is to store the electric
and magnetic energy separately in space. Thereby the M.LS
(transverse space operation) structures and periodic structures
(longitudinal space operation) are employed to generate the
slowing-down of propagation in a certain frequency range.

In this paper, the slowwave phenomenon observed in the pass band
by both experimental and theoretical analysis could be explained as
the coupling of * higher order mode in each periodic cell (electric
and magnetic energy to be concentrated respectively in smaller slo
(wy) and larger slot (W»)).

At and beyond resonant frequency point, all periodic cells can
effectively be regarded as cascade coupled cavities where the stuk
plays a significant role.

Figure 3 illustrates dispersion characteristics of periodic finline
with arbitrary located stubs. The comparison between measured
and calculated results shows a very good agreement over the
passband range, which valids this method. It can be seen that the
passband is limited by two points : cut-off and resonant frequencies
due tho shielded waveguide and periodic stubs. The former seems tc
be constant (approximatively equal to that of corresponding uniforn
structure). Indeed the infiuence of periodic stubs becomes negligible
near the cut-off point.

(resonant frequencies)
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Fig.3 : Dispersion characteristics of periodic
finline with arbitrary located stubs.
wl = 0.5, w2 = 4,5, sl = 4.83 (mm)
pxd = 3x1 (mm), €r = 2.22

On the other hand, by moving the stubs form S, = 2,83 mm
(symmetric case) to Sp = 4,83 mm (offset case) the resonant

frequency goes down considerably.

Anocther interesting phenomenon is that the resonant frequency can
effectively be changed by adjusting the period length without
varying the dispersion characteristics over the passband range
unless the frequency is in the shadow of resonance. The resonance
phenomenon arises in two cases :

(n S4-59
and/or = C(2k-1)/4 .\
Wo—W -8, (4)
(2) p=nig/2 (kn=1,273..)
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The coefficient C is determined by geometric conditions. It can
easily be seen that passbands and stopbands will occur periodically
with the frequency.

From results plotted on figure 4 several applications can be
considered. For example, using long stubs (wo/wq4), very narrow

selective filters can be obtained because the resonant frequency
closes the cutoff frequency.
Another possibility : for small values of wo/wy (and small Sy)

dispersion of odd mode tends to that of even mode all over the
passband, so, broad bandwidth directional couplers become
realizable.

Figure 5 shows the substrate losses as a function of frequency. Ir
general losses are always in accordance with the propagation
constant (increasing with frequency). However, for odd modes, a
minimum can be observed near cut-off frequency. It is remarked
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Fig.4 : Mode behaviours of the CPW structure
as a function of frequency
wl 0.5 mm, sl 4,08 mm, €gff = 2,22
pxd=3.0x1.0 (mm)

that optimal propagation (minimal losses) approaches Feff = 1.
CONCLUSION :

A new concept called "modal spectrum” in propagation direction has
been introduced and successfully applied in the theoretical analysis.
It makes possible to use directly the three dimensional spectral
domain approach in both symmetrically and unsymmaetrically loaded
periodic structures. Several examples based on this unified
algorithm show the slow-wave phenomenon as well as passband and
stopband behaviour related to the cut-off and resonant frequencies.
The dielectric losses can be involded.



{9] V. Dzougaiev, K. Wu, P. Saguet,
"Experimental and theoretical investigation of
characteristics of periodic-loaded finlines"

o
(dB/m) i Electron. Lett., 1986, 22, pp. 984-985
/ ! [10] K. Wu, A. Coumes, P. Saguet,
1.0 T "New generalizedd computations of quasi-planar
I waveguides characteristics”,
/ / to be published in Inter.], of infrared and mil-
i} limeter wave, vol. 8, No. 3, 1987
0.8 L
7
7
14
g
0.6
0.4 T 0.5 mm
= 1,0 mm
0.2
0 10 20 30

f(GHz)

Fig.5 : Propagation loss of the CPW structure
as a function of frequency for diffe-~
rent ratio w2/wl, (o = 0,001 1/¢m)
(the same conditions as Fig,4)

References :

[1] H. Hasegawa, H. Okizaki,
"MIS and Schottky slow-wave coplanar striplines on GaAs

substrates”
Electron. Lett., 1877, 13, pp. 663-664

[2] S. Seki, H. Hasegawa,
"Cross-tie slow-wave coplanar wave-guide on
semi-inulating GaAs substrates”
ibid., 1981, 17, pp. 940-941
[3] Y. Fukuoda, Y. Shih, T. ltoh,
"Analysis of slow-wave coplanar waveguide for monolithic

integrated circuits”
IEEE Trans., 1983, MTT-31, pp. 567-573

[4] R. Sorrentino, G. Leuzzi, A. Siibermann,
"Characteristics of metal-insulator-
semiconductor coplanar waveguides for monolithic
microwave circuits”
ibid., 1984, MTT-32, pp. 410-415
{5] A. Abdel Azeim, H. El Hennawy, S. Mahrous,
*Analysis of fin-lines on semiconductor substrate 14th EMC,
LIEGE, BELGIUM, 10th-13th, pp. 346-351, sept. 1984.
[6] F. J. Glandorf and IngoWoltf,
“A spectral domain hybrid field analysis of periodically
inhomogeneous microstrips lines”

1984, IEEE MTT-S, Digest, PP. 466Y468

[7] T. Kitazawa, R. Mittra,
"An investigation of strip lines and finlines with periodic
stubs”

IEEE Trans., 1984, MTT-32, pp. 686-688

[8] K. Wu, V. Dzougalev, P. Saguet,
"A complete theoretical and experimental analysis on

properties of periodic planar structure”
unpublished

632



